Расчет трансформатора Выбор типа выпрямителя Расчет магнитной системы Методы расчета электрических цепей Курсовая работа Метод контурных токов Метод законов Кирхгофа Метод двух узлов

Курсовая работа по электротехнике. Методы расчета электрических цепей Курсовая по электротехнике

Метод контурных токов

Теоретическая база метода контурных токов – 2-ой закон Кирхгофа в сочетании с принципом наложения. Предполагают, что в каждом элементарном контуре-ячейке схемы протекает «свой» контурный ток Ik, а действительные токи ветвей получаются по принципу наложения контурных токов как их алгебраические суммы. В качестве неизвестных величин, подлежащих определению, в данном методе выступают контурные токи. Общее число неизвестных составляет m-(n-1).

Пусть требуется выполнить расчет режима в заданной сложной схеме рис. 11. Параметры отдельных элементов схемы заданы.

Последовательность (алгоритм) расчета.

1) Задаются (произвольно) положительными направлениями контурных токов в контурах-ячейках схемы(Iк1 , Iк2 , Iк3 ). Контуры-ячейки следует выбирать так, чтобы они не включали в себя ветви с источниками тока. Ветви с источниками тока J образуют свои контуры с заданными токами (J1, J2).

2) Составляются m-(n-1) уравнений по 2-му закону Кирхгофа для выбранных контуров-ячеек с контурными токами Iк1, Iк2, Iк3. В уравнениях учитываются падения напряжений как от собственного контурного тока, так и от смежных контурных токов. Высокая надежность и долговечность оборудования Электротехнические расчеты

 


Ниже приведена система контурных уравнений для схемы рис. 17:

В обобщенной форме система контурных уравнений имеет вид:

Здесь введены следующие обозначения:

R11= R1 +R4; R22 = R2 +R5 и т. д. – собственные сопротивления контуров, равные сумме сопротивлений всех элементов контура;

R12 = R21 = 0 ; R23 = R32 = -R5 и т. д. – взаимные сопротивления между двумя смежными контурами, они положительны – если контурные токи в ветви совпадают, и отрицательны – если контурные токи в ветви направлены встречно, всегда отрицательны – если все контурные токи ориентированы одинаково (например, по часовой стрелке), равны нулю – если контуры не имеют общей ветви;

 E11 = E1 + J1R4, E22 = -E2, E33 = - E3 +J2R3 и т. д. – контурные ЭДС, равные алгебраической сумме слагаемых Enn = SE + SJR от всех источников контура.

Система контурных уравнений в матричной форме:

  или в сокращенно ,

где  - матрица контурных сопротивлений,  - матрица контурных токов,  - матрица контурных ЭДС.

3) Система контурных уравнений решается на ЭВМ по стандартной программе для решения систем линейных алгебраических уравнений с вещественными коэффициентами (SU1), в результате чего определяются неизвестные контурные токи Iк1, Iк2, Iк3.

4) Выбираются положительные направления токов в ветвях исходной схемы (рис. 1) (I1, I2, I3, I4, I5). Токи ветвей определяются по принципу наложения как алгебраические суммы контурных токов, протекающих в данной ветви.

I1 = Iк1 - J1; I2 = -Iк2; I3 = -Iк3 – J2; I4 = Iк1 – Ik3; I5 = -Iк2 + Ik3 .

5) При необходимости определяются напряжения на отдельных элементах (Uk = IkRk), мощности источников энергии (PEk = EkIk, PJk = Uk Jk) и приемников энергии (Pk = Ik2 ×Rk).


Курсовая работа по ТОЭ Резонанс в электрических цепях