Расчет трансформатора Выбор типа выпрямителя Расчет магнитной системы Методы расчета электрических цепей Курсовая работа Метод контурных токов Метод законов Кирхгофа Метод двух узлов

Курсовая работа по электротехнике. Методы расчета электрических цепей

Метод проводимостей

Метод проводимостей основан на применении схемы замещения с параллельным соединением элементов (рисунок 2.3).

 Расчёт начинают с определения активных, реакти­вных и полных проводимостей ветвей и всей цепи:

 G1 = R1 / Z12 = 2 / 3,612 = 0,153 См;

 BC1 = XC1 / Z12 = 3 / 3,612 = 0,23 См;


Рис. 2.3 Примесная электропроводность полупроводников. Доноры и акцепторы Характерной чертой полупроводников является их сильная чувствительность к примесям. Если в структуру идеального полупроводника ввести атом, относящийся к пятой группе периодической системы элементов, например сурьму или мышьяк, то четыре его электрона займут места в связях с соседними атомами полупроводника, а пятый - окажется как бы лишним.

G2 = R2 / Z22 = 14 / 18,42 = 0,0414 См;

Y1 = 1 / Zl = 1 / 3,61 = 0,277 См;

ВC2 = ХC2 / Z22 = 12 / 18,42 = 0,0354 См;

Y2 = 1 / Z2 = 1 / 18,4 = 0,0543 См;

BL3 = 1 / XL3 = 1 / 18 = 0,0556 См;

G = G1 + G2 = 0,153 + 0,0414 = 0,1944 См;

Нелинейные магнитные цепи постоянного потока Электромагнитное поле, которое лежит в основе всех многообразных явлений и процессов, исследуемых в электротехнике, имеет две равнозначные стороны – электрическую и магнитную. Как известно, в электрической цепи под воздействием источников энергии возникают электрические токи, которые протекают по электрическим проводам. Подобно электрическим цепям существуют также магнитные цепи, состоящие из магнитных проводов или кратко магнитопроводов, в которых под воздействием магнитодвижущих сил (МДС) возникают и замыкаются магнитные потоки Ф. Формальную схожесть или аналогию между электрическими и магнитными цепями в дальнейшем будем именовать принципом двойственности. Следует помнить, что при формальной схожести электрические и магнитные явления физически различны.

B = –BC1 – BC2 + BL3 = -0,23 – 0,0354 + 0,0556 = –0,2098 См;

 Y =  =  = 0,286 См.

Далее определяем активные, индуктивную и емкостные составляющие то­ков в ветвях заданной цепи:

IG1 = U * G1 = 65 * 0,153 = 9,945 A;

IC1 = U * BC1 = 65 * 0,23 = 14,95 A;

IG2 = U * G2 = 65 * 0,0414 = 2,69 A;

IC2 = U * BC2 = 65 * 0,0354 = 2,3 A;

I1 = U * Y1 = 65 * 0,277 = 18 A;

I2 = U * Y2 = 65 * 0,0543 = 3,53 A;

I3 = IL3 = U * BL3 = 65 * 0,0556 = 3,61 A

Отличие метода проводимостей в том, что мы можем конкретно опре­делить все индуктивные и емкостные составляющие токов в ветвях, а в методе активных и реактивных составляющих мы можем определить только общие реактивные токи с их положительными или отрицательными знаками, указывающими на индуктивный или ёмкостный характер ветви. Если предпо­ложить, например, что ветвь 2 задана параметрами R, L и C, а не R и С, как задано, то это различие проследить можно более наглядно. Тогда со­отношение между реактивными токами, полученными двумя методами вырази­лось бы в таком виде: IP2 = IL2 – IC2. В нашем случае эти соотношения имеют вид: Ia2 = IG1; Iа2 = IG2; IP1 = –IC1; IP2 = –IC2; IP3 = IL3.

Ток в неразветвлённой части цепи можно проверить и по его актив­ной и реактивной составляющим:

Ia = IG1 + IG2; 

 IP = IL3 – IC1 – IC2; 

 I =

Угол сдвига фаз и мощности определяются аналогично.


Курсовая работа по ТОЭ Резонанс в электрических цепях