Теоретическая механика Примеры задач контрольной работы Кинематика твердого тела Плоскопараллельное движение Импульс силы Проекция силы на ось и плоскость Определение реакций опор балки Определение центра тяжести фигуры

Примеры решения задач теоретическая механика

ПЛОСКАЯ СИСТЕМА СИЛ

Плоской называется такая система сил, линии действий которых расположены в одной плоскости. При рассмотрении плоской системы сил введем определения для нагрузок. Парой сил называется система двух равных по модулю, параллельных и направленных в противоположные стороны сил, действующих на твердое тело

(рис. 8).

Плоскость, в которой расположена данная пара, называется плоскостью действия этой пары. Перпендикуляр, опущенный из точки приложения одной из сил на линию

действия другой называется плечом пары (d). Действие пары сил определяется моментом пары. Численное значение момента пары определяется как произведение  модуля одной из сил на плечо этой пары.

  Приведем следующие два свойства пар сил:

1. Данную пару, не изменяя её действия на тело, можно переносить как угодно в плоскости её действия.

2. Не изменяя действия данной пары на тело, можно изменять модуль сил и плечо этой пары, сохраняя неизменным модуль и направление вращения пары.

Другим важным понятием является момент силы относительно данной точки (рис. 9). Момент силы относительно данной точки равен произведению модуля силы на плечо, т.е. длину перпендикуляра, опущенного из этой точки на линию действия силы. Следовательно, будем иметь

Mo(F)=±F∙h.

Момент силы считается положительным, если тело под действием данной силы стремится вращаться относительно точки О против часовой стрелки.

 Отметим следующие свойства момента силы:

1. Момент силы относительно данной точки не изменяется при переносе точки приложения силы вдоль линии действия силы.

2. Момент силы относительно данной точки обращается в нуль в том случае, когда линия действия силы проходит через эту точку.

При решении задач на плоскую систему сил пользуются уравнениями равновесия. Для равновесия плоской системы сил необходимо и достаточно, чтобы сумма проекций этих сил на две координатные оси и сумма моментов относительно произвольно выбранной точки равнялись нулю

  Существуют и две другие формы условий равновесия, но они используются гораздо реже.

 Вторая форма условий равновесия: для равновесия произвольной плоской системы сил необходимо и достаточно, чтобы суммы моментов этих сил относительно каких-нибудь двух центров А и В и сумма их проекций на ось, не перпендикулярную к прямой АВ, были равны нулю.

 Третья форма: для равновесия произвольной плоской системы сил необходимо и достаточно, чтобы суммы моментов всех этих сил относительной любых трех центров А, В и С, не лежащих на одной прямой, были равны нулю.

;

.


Сборник задач с решениями по термеху Устойчивость сжатого стержня