Теоретическая механика Примеры задач контрольной работы Кинематика твердого тела Плоскопараллельное движение Импульс силы Проекция силы на ось и плоскость Определение реакций опор балки Определение центра тяжести фигуры

Примеры решения задач теоретическая механика

Решение задач

Решение многих задач статики сводится к определению реакций опор, с помощью которых закрепляются балки и мостовые фермы.

В технике обычно встречаются три типа опорных закреплений (кроме рассмотренных в § 2):

1. Подвижная шарнирная опора (рис. 28, опора А). Реакция  такой опоры направлена по нормали к поверхности на которую опираются катки подвижной опоры.

2. Неподвижная шарнирная опора (рис. 28, опора В). Реакция   такой опоры проходит через ось шарнира и может иметь любое направление в плоскости чертежа. При решении задач будем реакцию  изображать ее составляющими  и  по направлениям координатных осей. Модуль  определим по формуле .

3. Жесткая заделка (рис. 29, а). Рассматривая заделанный конец балки и стену как одно целое, жесткую заделку изображают так, как показано на рис. 29, б. В этом случае на балку в ее поперечном сечении действует со стороны заделанного конца система распределенных сил (реакций). Считая эти силы приведенными к центру А сечения, можно их заменить одной силой  и парой с неизвестным моментом mA (рис. 29, а). Силу  можно изобразить ее составляющими ,  (рис. 29, б).

Таким образом, для нахождения реакции жесткой заделки надо определить три неизвестные величины XA, YA, mA.

 

 Рис. 28 Рис. 29

Отметим также, что в инженерных расчетах часто приходится встречаться с нагрузками, распределенными вдоль поверхности по тому или иному закону. Рассмотрим некоторые примеры распределенных сил.

Плоская система распределенных сил характеризуется ее интенсивностью q, т.е. значением силы, приходящейся на единицу длины нагруженного отрезка. Измеряется интенсивность в ньютонах, деленных на метры (Н/м).

а) Силы, равномерно распределенные вдоль отрезка прямой (рис. 30, а). Для такой системы интенсивность q имеет постоянное значение. При расчетах эту систему сил можно заменить равнодействующей . По модулю

Q = aq . (33)

Приложена сила Q в середине отрезка АВ.

б) Силы, распределенные вдоль отрезка прямой по линейному закону (рис. 30, б). Для этих сил интенсивность q является величиной переменной, растущей от нуля до максимального значения qm. Модуль равнодействующей   в этом случае определяется по формуле

Q = 0,5aqm . (34)

Приложена сила  на расстоянии а/3 от стороны ВС треугольника АВС.

  Рис. 30

Задача 3. Определить реакции неподвижной шарнирной опоры А и подвижной опоры В балки (рис. 31), на которую действуют активные силы: одна известная сосредоточенная сила F = 5 кН, приложенная в точке С под углом 600, и одна пара сил с моментом m = 8 кНм.

  Рис. 31

Решение. 1) Выбираем объект исследования, т.е. рассматриваем равновесие балки АВС. 2) Изобразим внешние силы, действующие на балку: силу , пару сил с моментом m и реакции связей , ,  (реакцию неподвижной шарнирной опоры А изображаем двумя ее составляющими). В результате имеем произвольную плоскую систему сил. 3) Проведем координатные оси x, y и составляем условия равновесия (28). Для вычисления момента силы , иногда, удобно разложить ее на составляющие  и , модули которых равняются F1 = F cos600 = 2,5 кН, F2 = F cos300 = 4,33 кН. Тогда получим:

,

.

Решая эту систему уравнений, найдем:

XA = F1 = 2,5 кН,  YB = (m + F2∙5)/3 = 9,88 кН, YA = F2 – YB = – 5,55 кН.

Знак минус реакции YA показывает, что эта реакция направлена вертикально вниз.

Для проверки составим уравнение моментов относительно нового центра, например, относительно точки В:

, 5,55∙3 – 8 – 4,33∙2 = – 0,01 ≈ 0.


Сборник задач с решениями по термеху Устойчивость сжатого стержня