ТЕХНОЛОГИЯ ПРОИЗВОДСТВА ЭЛЕКТРОЭНЕРГИИ НА ЭЛЕКТРОСТАНЦИЯХ

Электростанции
ОБЩИЕ СВЕДЕНИЯ И ТИПЫ ЭЛЕКТРОСТАНЦИЙ
Тепловые станции
  • Парогенератор
  • Основные энергетические насосы КЭС
  • Газотурбинные установки
  • Теплофикационные электростанции
  • Общее знакомство с паровой турбиной ТЭС
  • Атомные станции
  • Перспективы атомных электростанций
  • Нейтрон
  • Основные компоненты ядерного реактора
  • Классификация ядерных реакторов
  • Тепловые контуры атомных станций
  • Экономическая эффективность ядерной энергии
  • Основные типы реакторов,
    принятые к промышленной реализации
  • АЭС с уран-графитовыми канальными реакторами
  • АЭС с реакторами на быстрых нейтронах (БН)
  • Неоклассическая диффузия
    в магнитном поле токамака
  •  

    Тепловые контуры атомных станций

    Атомные электрические станции отличаются не только по типу реакторов, и материалов теплоносителя, но и по устройству тепловых контуров.

    Назначение теплоносителя – отводить тепло, выделившееся в реакторе при высвобождении внутриядерной энергии. Для предотвращения любых отложений на тепловыделяющих элементах необходима весьма высокая чистота теплоносителя, поэтому для него необходим замкнутый контур. Еще одна причина замкнутости контура – в результате прохода через реактор теплоноситель активируется и его протечки, не говоря уже о полном сбросе (разомкнутом цикле), могли бы создать серьезную радиационную опасность. Поэтому основная классификация атомных станций зависит от числа контуров в ней.

    Выделяют АЭС одноконтурные, двухконтурные, неполностью двухконтурные и трехконтурные. Если контуры теплоносителя и рабочего тела совпадают, то такую АЭС называют одноконтурной. В реакторе происходит парообразование, пар направляется в турбину, где, расширяясь, производит работу, превращаемую в генераторе в электроэнергию. После конденсации всего пара в конденсаторе конденсат насосом подается снова в реактор. Таким образом, контур рабочего тела является одновременно контуром теплоносителя, а иногда и замедлителя, и оказывается замкнутым. Реактор может работать как с естественной, так и с принудительной циркуляцией теплоносителя по дополнительному внутреннему контуру реактора, на котором установлен соответствующий насос.

    Если контуры теплоносителя и рабочего тела (пара) разделены, то такую АЭС называют двухконтурной.

    Соответственно контур теплоносителя называют первым, а контур рабочего тела – вторым. В таких схемах реактор охлаждается теплоносителем, прокачиваемым через него и парогенератор циркуляционным насосом. Образованный таким образом контур теплоносителя является радиоактивным, но он включает в себя не все оборудование станции, а лишь его часть. Если парообразование теплоносителя в реакторе отсутствует, то в систему первого контура вводится компенсатор объема, так как объем теплоносителя зависит от температуры, изменяющейся в процессе работы. Пар из парогенератора поступает в турбину, затем в конденсатор, а конденсат из него насосом подается в парогенератор. Образованный таким образом второй контур включает оборудование, работающее в отсутствии радиационной активности, это упрощает эксплуатацию станции. На двухконтурной станции обязательна парогенерирующая установка – элемент, разделяющий оба контура, поэтому она в равной степени принадлежит как первому, так и второму. Передача тепла через поверхность нагрева требует перепада температур между теплоносителем и кипящей водой в парогенераторе. Для водного теплоносителя это требует поддержания в первом контуре более высокого давления, чем давление пара, подаваемого на турбину. Стремление избежать в первом контуре закипания теплоносителя в каналах реактора приводит к необходимости иметь здесь давление, существенно превышающее давление во втором контуре. Соответственно тепловая экономичность такой станции всегда меньше, чем одноконтурной с тем же давлением в реакторе. Однако в действительности экономичность циклов практически одинакова, что обусловлено необходимостью принятия в одноконтурной схеме специальных мер против удаления продуктов коррозии сталей из воды, поступающей на турбину (регенеративный подогрев).

    Атомная станция может работать как не полностью двухконтурная (или частично двухконтурная). В этом случае имеется как самостоятельный первый контур теплоносителя, так и совмещенный контур теплоносителя с собственно вторым контуром. Пар, образовавшийся в реакторе, осушается в барабане-сепараторе, поступает в парогенератор, конденсируется в нем и смешивается с реальной водой. Циркуляционный насос возвращает теплоноситель в реактор. Образовавшийся в парогенераторе насыщенный пар поступает для перегрева в реактор и поэтому является не только рабочим телом, но и теплоносителем. Далее пар проходит по всему второму контуру, который тем самым оказывается совмещенным с первым, но только в его паровой, наименее радиоактивной, части.

    Существуют теплоносители, попадание в которые пара или воды вызывает бурное химическое взаимодействие. Это может создать опасность выброса радиационно-активных веществ из первого контура в обслуживаемые помещения. Таким теплоносителем является, например, жидкий натрий. Поэтому создают дополнительный (промежуточный) контур, с тем, чтобы даже в аварийных ситуациях можно было избежать контакта радиоактивного натрия с водой или водяным паром. Такие АЭС называются трехконтурными.

    Обзор отрасли: ядерная энергетика

    Роль ядерной энергии в производстве электричества

    Энергия атома на сегодняшний день является одним из наиболее спорных источников энергии. Повсюду продолжается бурная дискуссия между сторонниками и противниками АЭС. В таких европейских странах, как Швеция и Германия, «зеленые», похоже, одержали важную победу, добившись свертывания ядерной программы. Однако в других государствах, особенно в Азии, эти программы успешно развиваются.

    Изначально ядерная энергетика являлась побочным продуктом военных технологий и ее развитие субсидировалось государством. Несмотря на то, что ядерный реактор впервые был создан еще в 1942 г., коммерческое использование энергии ядра началось только в 50-х годах. Тогда же появились и первые АЭС, но до 70-х годов они не находили широкого применения.

    Эра расцвета ядерной энергетики приходится на 70-е годы. Нефтяной кризис 1973 г. поставил развитые страны перед необходимостью обеспечения энергетической безопасности, в том числе за счет выбора дешевых и доступных источников энергии, а также их диверсификации. Всем этим критериям удовлетворяла ядерная энергетика. Ее доля в общем объеме производства электроэнергии в странах Организации экономического сотрудничества и развития (ОЭСР) возросла с 5% в 1974 г. до 25% к середине 90-х годов. Доля же нефти в производстве электроэнергии за тот же период упала с 25% ниже 10%.

    В 70-х годах казалось, что ядерная энергетика - это энергетика будущего. Однако аварии (на станции Three Mile Island в США в 1979 г. и на Чернобыльской АЭС в 1986 г.) вызвали громкий протест широкой публики против ядерной энергетики. К тому же рост цен на энергоносители оказался не таким значительным, как предсказывали в 70-х годах. Явного экономического преимущества ядерной энергии по сравнению с традиционными видами топлива уже не было. Кроме того, ужесточение требований к безопасности работы атомных станций привело к росту стоимости производимой энергии. В результате ядерная программа в некоторых странах начала сворачиваться и темп строительства ядерных объектов был замедлен. Если в 70-е годы производство электроэнергии в мире атомными станциями росло со среднегодовым темпом 19%, то в 80-е годы прирост замедлился до 10,5%, а в 90-е упал до 2,3%. Тем не менее сегодня ядерная энергетика является существенным фактором экономической жизни многих стран, а ее доля в общем объеме производства электроэнергии в мире составляет 16%.

    На сегодняшний день основным топливом для атомных станций является уран, точнее его изотоп уран-235. По распространенности в земной коре уран можно сравнить с цинком. Его концентрация в среднем составляет 0,00014%. Но в урановой руде, используемой для промышленного производства урана, его концентрация может достигать 2%.

    Распределение природных запасов урана в мире

    Страна

    U3O8 (т)

    % к мировым

    Австралия

    889000

    27

    Казахстан

    558000

    17

    Канада

    511000

    15

    Южная Африка

    354000

    11

    Намибия

    256000

    8

    Бразилия

    232000

    7

    Россия

    157000

    5

    США

    125000

    4

    Узбекистан

    125000

    4

    Всего в мире

    3340000

    Источник: Uranium Information Center

    Ядерное топливо, как и традиционные виды топлива, относится к невозобновляемым источникам энергии. Ежегодное промышленное потребление урана в мире составляет около 60 тыс. т. Разведанные же запасы этого вещества составляют 3,340 млн т. Таким образом, при сохранении нынешнего уровня потребления запасами урана человечество обеспечено всего на 50 лет.

    Запасы и потребление ископаемых источников энергии в 1999 г.

    Сырье

    Запасы

    Потребление

    R/P (лет)

    Нефть (млн т)

    140400

    3450

    41

    Газ (млрд куб. м)

    146430

    2330

    63

    Уголь (млн т)

    984211

    4300

    230

    Источник: BP Amoco

    Обеспеченность человечества ураном сопоставима с обеспеченностью нефтью и газом. Однако уран уже сегодня имеет значительное преимущество перед традиционными видами топлива. В качестве ядерного топлива можно использовать не только уран-235, концентрация которого в природном уране составляет менее 1%, но и плутоний-239, который в природе не встречается. Производится плутоний в ядерном реакторе из изотопа уран-238, ранее не находившего применения в качестве атомного топлива. Однако сегодня не только разработана технология, но уже и созданы специальные реакторы на быстрых нейтронах, использующие в качестве топлива плутоний.

    Применение в качестве реакторного топлива плутония увеличивает ядерные энергетические ресурсы в 60 раз, т.е. на 3000 лет при текущих темпах потребления атомной энергии. Сегодня в мире работает 6 реакторов на быстрых нейтронах, в том числе 3 в России. При этом в коммерческой эксплуатации находится два из них: российский БН-600 на Белоярской АЭС и французский реактор Phоenix. Первый эксплуатируется с 1980 г., а второй - с 1973 г. Тем не менее широкое применение реакторов на быстрых нейтронах сдерживается более высокой их стоимостью по сравнению с обычными типами реакторов.

    Атомная энергетика на сегодняшний день получила широкое распространение в мире. В 1999 г. атомными станциями было выработано 2480 млрд кВт/ч. электроэнергии, на АЭС установлено 440 реакторов.

    Ядерная энергия для коммерческого использования вырабатывается в 31 стране мира. В ближайшее время этот клуб пополнится Ираном, который запустит свою первую станцию в Бушере. Строительство атомных станций планируется еще в 3 странах (в Египте, Индонезии и Северной Корее). Правда, одновременно с этим некоторые страны сокращают свои ядерные программы. Так, о закрытии в ближайшее время своих АЭС заявили Швеция и Литва. К 2030 г. Германия тоже может закрыть атомные станции. Но, учитывая отдаленность этого события и то, какую долю ядерная энергия занимает в энергобалансе Германии сегодня, реализация этого решения ставится под сомнение.

    Доля различных источников энергии для производства электричества в мире

    по данным Uranium Information Center

    Доля атомной энергии в электроэнергетике разных стран мира

    по данным Uranium Information Center

    В некоторых странах ядерная энергетика приобрела доминирующее положение. Для 16 стран доля ядерной энергии в общем объеме производства электроэнергии превышает 30%. На рис. 3 представлены 10 крупнейших стран-производителей ядерной энергии.

    10 стран - крупнейших производителей ядерной энергии

    по данным Nuclear Energy Institute

    ТЕХНОЛОГИЯ ПРОИЗВОДСТВА ЭЛЕКТРОЭНЕРГИИ НА ЭЛЕКТРОСТАНЦИЯХ